30,902 research outputs found

    Evaluation of bistable systems versus matched filters in detecting bipolar pulse signals

    Full text link
    This paper presents a thorough evaluation of a bistable system versus a matched filter in detecting bipolar pulse signals. The detectability of the bistable system can be optimized by adding noise, i.e. the stochastic resonance (SR) phenomenon. This SR effect is also demonstrated by approximate statistical detection theory of the bistable system and corresponding numerical simulations. Furthermore, the performance comparison results between the bistable system and the matched filter show that (a) the bistable system is more robust than the matched filter in detecting signals with disturbed pulse rates, and (b) the bistable system approaches the performance of the matched filter in detecting unknown arrival times of received signals, with an especially better computational efficiency. These significant results verify the potential applicability of the bistable system in signal detection field.Comment: 15 pages, 9 figures, MikTex v2.

    Conceptual mechanization studies for a horizon definition spacecraft structures and thermal subsystem

    Get PDF
    Conceptual mechanization for horizon definition spacecraft structures and thermal subsystem - spin-stabilized, hexagonal cylinder for launch of two-stage Improved Delta /DSV-3N

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    b-quark decay in the collinear approximation

    Get PDF
    The semileptonic decay of a b-quark, b--> c l nu, is considered in the relativistic limit where the decay products are approximately collinear. Analytic results for the double differential lepton energy distributions are given for finite charm-quark mass. Their use for the fast simulation of isolated lepton backgrounds from heavy quark decays is discussed.Comment: 7 pages, 1 figure, submitted to Phys.Rev.

    First Steps Toward Change in Teacher Preparation for Elementary Science

    Get PDF
    Unless introductory undergraduate science classes for prospective elementary teachers actively incorporate the philosophy of inquiry-based learning called for in K-l2 science education refom little will change in elementary science education. Thus, at James Madison University, we have developed a new integrated science core curriculum called Understanding our World [1]. This course sequence was not only designed to fulfill general education science requirements. but also to focus on content areas our students will need to know as teachers. The objectives of these courses are based on the National Science Education Standards and Virginia’s Science Standards of Learning, including earth and space science, chemistry, physics, life sciences, and environmental science [2,3]. As an integrated package, this course sequence addresses basic science content, calculation skills, the philosophy and history of science, the process of how science is done, the role of science in society, and applications of computers and technology in science. Keeping in mind that students tend to teach in the same way they were taught, Understanding our World core classes embrace the concepts associated with reform in elementary math and science

    The Importance of Broad Emission-Line Widths in Single Epoch Black Hole Mass Estimates

    Full text link
    Estimates of the mass of super-massive black holes (BHs) in distant active galactic nuclei (AGNs) can be obtained efficiently only through single-epoch spectra, using a combination of their broad emission-line widths and continuum luminosities. Yet the reliability and accuracy of the method, and the resulting mass estimates, M_BH, remain uncertain. A recent study by Croom using a sample of SDSS, 2QZ and 2SLAQ quasars suggests that line widths contribute little information about the BH mass in these single-epoch estimates and can be replaced by a constant value without significant loss of accuracy. In this Letter, we use a sample of nearby reverberation-mapped AGNs to show that this conclusion is not universally applicable. We use the bulge luminosity (L_Bulge) of these local objects to test how well the known M_BH - L_Bulge correlation is recovered when using randomly assigned line widths instead of the measured ones to estimate M_BH. We find that line widths provide significant information about M_BH, and that for this sample, the line width information is just as significant as that provided by the continuum luminosities. We discuss the effects of observational biases upon the analysis of Croom and suggest that the results can probably be explained as a bias of flux-limited, shallow quasar samples.Comment: 10 text pages + 4 Figures + 1 Table. Accepted for publication in ApJ Letter

    Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct

    Get PDF
    We tested whether severe congestive heart failure (CHF), a condition associated with excess free-water retention, is accompanied by altered regulation of the vasopressin-regulated water channel, aquaporin-2 (AQP2), in the renal collecting duct. CHF was induced by left coronary artery ligation. Compared with sham-operated animals, rats with CHF had severe heart failure with elevated left ventricular end-diastolic pressures (LVEDP): 26.9 ± 3.4 vs. 4.1 ± 0.3 mmHg, and reduced plasma sodium concentrations (142.2 ± 1.6 vs. 149.1 ± 1.1 mEq/liter). Quantitative immunoblotting of total kidney membrane fractions revealed a significant increase in AQP2 expression in animals with CHF (267 ± 53%, n=12) relative to sham-operated controls (100 ± 13%, n=14). In contrast, immunoblotting demonstrated a lack of an increase in expression of AQP1 and AQP3 water channel expression, indicating that the effect on AQP2 was selective.Furthermore, postinfarction animals without LVEDP elevation or plasma Na reduction showed no increase in AQP2 expression (121 ± 28% of sham levels, n=6). Immunocytochemistry and immunoelectron microscopy demonstrated very abundant labeling of the apical plasma membrane and relatively little labeling of intracellular vesicles in collecting duct cells from rats with severe CHF, consistent with enhanced trafficking of AQP2 to the apical plasma membrane. The selective increase in AQP2 expression and enhanced plasma membrane targeting provide an explanation for the development of water retention and hyponatremia in severe CHF
    corecore